US009374308B2

a2z United States Patent 10y Patent No.: US 9,374,308 B2
Bhagavathiperumal et al. @45) Date of Patent: Jun. 21, 2016
(54) OPENFLOW SWITCH MODE TRANSITION 2008/0049621 Al* 2/2008 McGuire HO4L 12/24
370/236.2
PROCESSING 2009/0270175 Al* 10/2009 Kellycccccee GO7F 17/3225
. 463/42
(71) Applicant: LENOVO ENTERPRISE 2011/0022812 Al* 12011 vander Linden GOGF 9/5077
SOLUTIONS (SINGAPORE) PTE. 711/163
LTD., New Tech Park (SG) 2011/0090853 Al* 4/2011 Chandramouli HO04W 28/10
’ 370/329
(72) Inventors: Chidambaram Bhagavathiperumal 2011/0286324 AL1* 112011 Bellagamba ... Ho4L 431%0/2;;
Santa Clara, CA (US); Yi Bo Song, Wuxi 2012/0215933 Al 82012 Liu
(CN); Liang Yang, Nanjing (CN) 2012/0300615 Al 112012 Kempf et al.
2013/0028073 Al* 1/2013 Tatipamula HO4L 41/12
(73) Assignee: LENOVO ENTERPRISE . _ 370218
SOLUTIONS (SINGAPORE) PTE. 2013/0028142 Al 1/2013 Beheshti-Zavarch ... H043L73/52/§§
LTD., Singapore (SG) 2013/0132536 Al 5/2013 Zhangetal.
2013/0148656 Al 6/2013 Zhang et al.
(*) Notice: Subject to any disclaimer, the term of this 2013/0151676 Al 6/2013 Thakkar et al.
patent is extended or adjusted under 35 2013/0215769 Al* 8/2013 Beheshti-Zavareh ... HO4L 45/64
370/252
US.C. 154(b) by 547 days. 2013/0268686 A1* 10/2013 Wang ...oooooocooe. HOA4L 65/1069
709/228
(21) Appl. No.: 14/015,681 2014/0133492 Al* 52014 Takajocccooeom.. HO4L 45/22
370/401
(22) Filed: Aug. 30,2013 2014/0211661 Al* 7/2014 Gorkemli HO4L 41/12
370/255
; taati 2014/0355448 Al* 12/2014 Kawano HO4L 45/64
(65) Prior Publication Data 70736
US 2015/0063108 Al Mar. 5, 2015 2015/0003259 Al* 1/2015 Gaoccccoeveveinn HO4L 45/18
370/244
(51) Int.CL OTHER PUBLICATIONS
gzji ;;f;gi (381281) McKeown N. et al., “OpenFlow: Enabling Innovation in Campus
(01 Networks”, ACM SIGCOMM Computer Communication Review,
HO4L 12/721 (2013.01) Apr. 2008, pp. 69-74, v. 38, No. 2, United States.
(52) US.CL (Continued)
CPC ..o HO4L 47/12 (2013.01); HO4L 49/00 i
(2013.01); HO4L 45/38 (2013.01) Primary Examiner — Khaled Kassim
(58) Field of Classification Search (74) Autorney, Agent, or Firm — Kunzler Law Group;
CPC ... HO4L 45/38; HO4L 47/12; HO4L 49/00 Katherine S. Brown
See application file for complete search history. 7 ABSTRACT
Embodiments of the invention relate to switch mode transi-
(56) References Cited tion and processing upon loss of controller communication.
One embodiment includes losing a connection with a control-
U.S. PATENT DOCUMENTS ler by a switch device, entering a particular mode by the
switch device, transferring flow entries of the switch device to
7,251,245 B2 7/2007 Oman

2004/0086097 Al*

12/2012 Foschiano et al.
5/2004 Olafsson

8,327,014 B2
HO4L 5/1438
379/93.32

one or more tables, and notifying network application proto-
cols that correspond to the transferred flow entries.

12 Claims, 7 Drawing Sheets

/600
Control plane
——————————— S—
w "
- PR
Flows in OpenFlow T N T~
switch = ’ N
Switch1 , \ Switch2
, \

AY

620<

/ \\ >620

Switch3

Switch n

US 9,374,308 B2
Page 2

(56) References Cited Standards and Technology, Information Technology Laboratory,

USA.
OTHER PUBLICATIONS

Mell, P. et al., “The NIST Definition of Cloud Computing”, Special
Publication, Version 15, Oct. 7, 2009, 2 pages, National Institute of * cited by examiner

US 9,374,308 B2

Sheet 1 of 7

Jun. 21, 2016

U.S. Patent

or\

I O|d
(SERIEle
WNEALXT Ny,
A
Y
YILdvay YHOMLIAN (S)30V443LINI s Avidsia
v . O/l
0c¢ A \ \
7 &4 ve
R4y 0 i
| FAS \
_r_L pu / LINN
p—— L =hovo ONISSIDONd
WILSAS 7
JOVHOLS [« J\
— > AvY
Lm AHOWIN /
\ o€ /NF
8¢ HIAHIS/NILSAS HILNAINOD

U.S. Patent Jun. 21,2016 Sheet 2 of 7 US 9,374,308 B2

™\-54C

o !
- HEE
B e Y "
S U5 - '
| xS S
NS K ' “
- LY NN St . H . AN
e Y RS O S N
S Q R RO s x
AN N, . [
g £y
ROGEES " v) T [
RIS T ¢ s, 12
S - 3, ’ s, 1 .
4 . . O
s SN . Y’ e
Y s . SN, S
LR 1 ; '\ ’
2 s e
,
0

54B

FIG. 2

US 9,374,308 B2

Sheet 3 of 7

Jun. 21, 2016

U.S. Patent

¢ Old

09

[

a1em)jos
JanIeg

alem)os uoneolddy
aseqeleg omliaN BuiyomiaN sbeloig ®_>_m_

@B mzs I /-

SWo)SAS

Jsan

Qepeig

SWI9ISAS

@ S8USSX 5 mpeyyory

gl

2JEM}JOS pue aiempieH
SISAISS

OSId Ssweyurepn

/ sjualD suonedliddy s)Iom}eN

[enpip [enpin [enpIA

| o

O = &

abelo)s
BNUIA

==

SIOAIOS uonezijenyip
[eNJIA

—]

¥9

/

/
9

Juswabeue
|[euod Buioud pue BuIuoISIAOIH
VNI EETAY! 82JN0SaY 9

usuwyn4 pue/ /uswabeuej
Buluue|ld V1S |9ADT 801AI9S J/sN

/

SPEOPUOAN

BuIssa00.d mwmwm_ww@ogn_
onoesuel| o

[enpin

LYY [Tl
uoneonp3g
woolIsse|D

21em)jog

uawsabeuelp

uonisuels |
3PON
UoUMS

U.S. Patent

Jun. 21, 2016

420

Secure
SW Channel
HW Flow Table

450

Sheet 4 of 7

440

OpenFlow
Protocol

~430

US 9,374,308 B2

400
4

410

Il
A

=)~

US 9,374,308 B2

Sheet S of 7

Jun. 21, 2016

U.S. Patent

G Ol

Buidoous 4I\D|

9|qe} J1Sedniniy di

S04 0} IndinQO :uonoy
did
dIS ‘NVIA ydrep

1Sednini\ di g 18heT

Buidoous 4I\D|

9|qe} J1SEdNINN 271

S04 0} IndinQO :uonoy
OVINGA ‘NVYTA Uoleiy

1SednN|N Z 1eAe

(NLY)
Jobeue a|qe| a1noy

8|qel Bunnoy ¢

Juswialoap 111

‘Wod ‘OvIANQ (OVIN
H1Y) OVINS uonoy
%sen/did (OVIN U1d)
OVING ‘NY A Uoey

1seodiun € Jahe

QUON

(81qe) ssaippy
OVIN 21) 9gad

Hod 03} IndinQ :uonoy
OVINA ‘NVTA Uore

1seodiun z 1ehe

PSYNON g 03 |090}0id

Anu3g
a|qe] Buipiemio

Aiu3g mojquadp

adA| mo|4

009 \

U.S. Patent Jun. 21,2016 Sheet 6 of 7 US 9,374,308 B2

fGOO
Control plane
----------- i
Data plane w 410
Flows in OpenFlow ESSANEN
625\[switch =ad /// N
Flow 1 Switch1 '\ Switch2
/| , \
626< , \
N\ Flow 2 620< // \\ i >620
"""""" Switch3 Switch n
626N Flow n
FIG. 6 00
N
i
Flow transmit to 410
traditional table
PRERANR
Traditional table in “T 0N T~
725\/ switch X A ——
l/
726~[UFDB/MFDB Switch1 \\ Switch2
/
p) \
727 - |
N 1P multicast table 620< / \\ i >620
% :
"""""" Switch3 Switch n
728
N L3 routing table

_ /

FIG. 7

U.S. Patent Jun. 21,2016 Sheet 7 of 7 US 9,374,308 B2

Losing a Connection
Between the Switch and a
Controller

Y

Entering a Particular | ~820
Mode by a Switch

Y

Moving Flow Entriesto [~830
Forwarding Table

Y

Notifying Network _~840
Application Protocol

Y

Deleting All Flow -850
Entries

FIG. 8

US 9,374,308 B2

1
OPENFLOW SWITCH MODE TRANSITION
PROCESSING

BACKGROUND

Embodiments of the invention relate to switching environ-
ments, and in particular, switch mode transition and process-
ing upon loss of controller communication.

OpenFlow switches are based on an Ethernet switch with
an internal flow table, and a standardized interface to add and
remove flow entries. Ethernet switches and routers may con-
tain flow tables (typically built from ternary content-addres-
sable memory (TCAM)) that run at line-rate to implement
firewalls, network address translation (NAT), quality of ser-
vice (QoS), and to collect statistics.

In OpenFlow, upon loss of communication with a control-
ler, packets that cannot match any flow entries will be
dropped. The packet drop continues to worsen as flow entries
might become invalid due to timing out, or all the exiting flow
entries may become invalidated immediately, which cause
packets to become flooded during transition.

BRIEF SUMMARY

Embodiments of the invention relate to switch mode tran-
sition and processing upon loss of controller communication.
One embodiment includes losing a connection with a control-
ler by a switch device, entering a particular mode by the
switch device, transferring flow entries ofthe switch device to
one or more tables, and notifying network application proto-
cols that correspond to the transferred flow entries.

Another embodiment comprises a computer program
product for switch device processing upon communication
loss. The computer program product comprising a computer
readable storage medium having program code embodied
therewith. The program code readable/executable by a pro-
cessor to perform a method comprising: losing a connection
with a controller by a switch device, entering a particular
mode by the switch device, transferring flow entries of the
switch device to one or more tables, and notifying network
application protocols that correspond to the transferred flow
entries.

One embodiment comprises a system. The system com-
prises a controller device and a plurality of connected switch
devices coupled with the controller. In one embodiment, upon
a particular switch device losing communication with the
controller, the particular switch device transfers one or more
flow entries to one or more forwarding tables and notifies one
or more network application protocols that correspond to the
transferred one or more flow entries.

These and other features, aspects and advantages of the
present invention will become understood with reference to
the following description, appended claims and accompany-
ing figures.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 depicts a cloud computing node according to an
embodiment of the present invention;

FIG. 2 depicts a cloud computing environment according
to an embodiment of the present invention;

FIG. 3 depicts an abstraction model layers according to an
embodiment of the present invention;

FIG. 4 illustrates a block diagram of a system including an
OpenFlow switch connected with a controller, in accordance
with an embodiment of the invention;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 5 illustrates a table of flow entries that may be trans-
ferred to forwarding tables, in accordance with an embodi-
ment of the invention;

FIG. 6 illustrates a block diagram of an OpenFlow system,
in accordance with an embodiment of the invention;

FIG. 7 illustrates a block diagram of an OpenFlow system
with communication loss to a switch device, in accordance
with an embodiment of the invention; and

FIG. 8 is a block diagram showing a process for switching
mode transition and processing upon communication loss
with a controller, in accordance with an embodiment of the
invention.

DETAILED DESCRIPTION

It is understood in advance that although this disclosure
includes a detailed description of cloud computing, imple-
mentation of the teachings recited herein are not limited to a
cloud computing environment. Rather, embodiments of the
present invention are capable of being implemented in con-
junction with any other type of computing environment now
known or later developed.

Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be rap-
idly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as follows:

On-demand self-service: a cloud consumer can unilaterally
provision computing capabilities, such as server time and
network storage, as needed, automatically without requiring
human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that pro-
mote use by heterogeneous thin or thick client platforms (e.g.,
mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There is
a sense of location independence in that the consumer gener-
ally has no control or knowledge over the exact location of the
provided resources but may be able to specify location at a
higher level of abstraction (e.g., country, state, or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale out
and be rapidly released to quickly scale in. To the consumer,
the capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capability
at some level of abstraction appropriate to the type of service
(e.g., storage, processing, bandwidth, and active consumer
accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to the
consumer is to use the provider’s applications running on a
cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as a
web browser (e.g., web-based email). The consumer does not
manage or control the underlying cloud infrastructure includ-

US 9,374,308 B2

3

ing network, servers, operating systems, storage, or even
individual application capabilities, with the possible excep-
tion of limited consumer-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to the
consumer is to deploy onto the cloud infrastructure con-
sumer-created or acquired applications created using pro-
gramming languages and tools supported by the provider. The
consumer does not manage or control the underlying cloud
infrastructure including networks, servers, operating sys-
tems, or storage, but has control over the deployed applica-
tions and possibly application-hosting environment configu-
rations.

Infrastructure as a Service (laaS): the capability provided
to the consumer is to provision processing, storage, networks,
and other fundamental computing resources where the con-
sumer is able to deploy and run arbitrary software, which can
include operating systems and applications. The consumer
does not manage or control the underlying cloud infrastruc-
ture but has control over operating systems, storage, deployed
applications, and possibly limited control of select network-
ing components (e.g., host firewalls).

Deployment Models are as follows:

Private cloud: the cloud infrastructure is operated solely for
an organization. It may be managed by the organization or a
third party and may exist on-premises or off-premises.

Community cloud: the cloud infrastructure is shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-pre-
mises or off-premises.

Public cloud: the cloud infrastructure is made available to
the general public or a large industry group and is owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standardized
or proprietary technology that enables data and application
portability (e.g., cloud bursting for load-balancing between
clouds).

A cloud computing environment is service oriented with a
focus on statelessness, low coupling, modularity, and seman-
tic interoperability. At the heart of cloud computing is an
infrastructure comprising a network of interconnected nodes.

Referring now to FIG. 1, a schematic of an example of a
cloud computing node is shown. Cloud computing node 10 is
only one example of a suitable cloud computing node and is
notintended to suggest any limitation as to the scope of use or
functionality of embodiments of the invention described
herein. Regardless, cloud computing node 10 is capable of
being implemented and/or performing any of the functional-
ity set forth hereinabove.

In cloud computing node 10, there is a computer system/
server 12, which is operational with numerous other general
purpose or special purpose computing system environments
or configurations. Examples of well-known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with computer systeny/server 12 include, but are
not limited to, personal computer systems, server computer
systems, thin clients, thick clients, hand-held or laptop
devices, multiprocessor systems, microprocessor-based sys-
tems, set top boxes, programmable consumer electronics,
network PCs, minicomputer systems, mainframe computer
systems, and distributed cloud computing environments that
include any of the above systems or devices, and the like.

10

15

20

25

30

35

40

45

50

55

60

65

4

Computer system/server 12 may be described in the gen-
eral context of computer system-executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 12 may be prac-
ticed in distributed cloud computing environments where
tasks are performed by remote processing devices that are
linked through a communications network. In a distributed
cloud computing environment, program modules may be
located in both local and remote computer system storage
media including memory storage devices.

As shown in FIG. 1, computer system/server 12 in cloud
computing node 10 is shown in the form of a general purpose
computing device. The components of computer system/
server 12 may include, but are not limited to, one or more
processors or processing units 16, a system memory 28, and
a bus 18 that couples various system components including
system memory 28 to processor 16.

Bus 18 represents one or more of any of several types ofbus
structures, including a memory bus or memory controller, a
peripheral bus, an accelerated graphics port, and a processor
orlocal bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnects (PCI) bus.

Computer system/server 12 typically includes a variety of
computer system readable media. Such media may be any
available media that is accessible by computer system/server
12, and it includes both volatile and non-volatile media,
removable and non-removable media.

System memory 28 can include computer system readable
media in the form of volatile memory, such as random access
memory (RAM) 30 and/or cache memory 32. Computer sys-
ten/server 12 may further include other removable/non-re-
movable, volatile/non-volatile computer system storage
media. By way of example only, storage system 34 can be
provided for reading from and writing to a non-removable,
non-volatile magnetic media (not shown and typically called
a“hard drive”). Although not shown, a magnetic disk drive for
reading from and writing to a removable, non-volatile mag-
netic disk (e.g., a “floppy disk™), and an optical disk drive for
reading from or writing to a removable, non-volatile optical
disk such as a CD-ROM, DVD-ROM, or other optical media
can be provided. In such instances, each can be connected to
bus 18 by one or more data media interfaces. As will be
further depicted and described below, memory 28 may
include atleast one program product having a set (e.g., at least
one) of program modules that are configured to carry out the
functions of embodiments of the invention.

The embodiments of the invention may be implemented as
a computer readable signal medium, which may include a
propagated data signal with computer readable program code
embodied therein (e.g., in baseband or as part of a carrier
wave). Such a propagated signal may take any of a variety of
forms including, but not limited to, electro-magnetic, optical,
or any suitable combination thereof. A computer readable
signal medium may be any computer readable medium that is
not a computer readable storage medium and that can com-
municate, propagate, or transport a program for use by or in
connection with an instruction execution system, apparatus,
or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium including,

US 9,374,308 B2

5

but not limited to, wireless, wireline, optical fiber cable,
radio-frequency (RF), etc., or any suitable combination of the
foregoing.

Program/utility 40, having a set (at least one) of program
modules 42, may be stored in memory 28 by way of example,
and not limitation, as well as an operating system, one or more
application programs, other program modules, and program
data. Each of the operating systems, one or more application
programs, other program modules, and program data or some
combination thereof, may include an implementation of a
networking environment. Program modules 42 generally
carry out the functions and/or methodologies of embodiments
of the invention as described herein.

Computer system/server 12 may also communicate with
one or more external devices 14 such as akeyboard, a pointing
device, a display 24, etc.; one or more devices that enable a
consumer to interact with computer system/server 12; and/or
any devices (e.g., network card, modem, etc.) that enable
computer system/server 12 to communicate with one or more
other computing devices. Such communication can occur via
1/0 interfaces 22. Still yet, computer system/server 12 can
communicate with one or more networks such as a local area
network (LAN), a general wide area network (WAN), and/or
a public network (e.g., the Internet) via network adapter 20.
As depicted, network adapter 20 communicates with the other
components of computer system/server 12 via bus 18. It
should be understood that although not shown, other hard-
ware and/or software components could be used in conjunc-
tion with computer system/server 12. Examples include, but
are not limited to: microcode, device drivers, redundant pro-
cessing units, external disk drive arrays, RAID systems, tape
drives, and data archival storage systems, etc.

Referring now to FIG. 2, illustrative cloud computing envi-
ronment 50 is depicted. As shown, cloud computing environ-
ment 50 comprises one or more cloud computing nodes 10
with which local computing devices used by cloud consum-
ers, such as, for example, personal digital assistant (PDA) or
cellular telephone 54A, desktop computer 54B, laptop com-
puter 54C, and/or automobile computer system 54N may
communicate. Nodes 10 may communicate with one another.
They may be grouped (not shown) physically or virtually, in
one or more networks, such as private, community, public, or
hybrid clouds as described hereinabove, or a combination
thereof. This allows cloud computing environment 50 to offer
infrastructure, platforms, and/or software as services for
which a cloud consumer does not need to maintain resources
on a local computing device. It is understood that the types of
computing devices 54 A-N shown in FIG. 2 are intended to be
illustrative only and that computing nodes 10 and cloud com-
puting environment 50 can communicate with any type of
computerized device over any type of network and/or net-
work addressable connection (e.g., using a web browser).

Referring now to FIG. 3, a set of functional abstraction
layers provided by cloud computing environment 50 (FIG. 2)
is shown. It should be understood in advance that the compo-
nents, layers, and functions shown in FIG. 3 are intended to be
illustrative only and embodiments of the invention are not
limited thereto. As depicted, the following layers and corre-
sponding functions are provided:

Hardware and software layer 60 includes hardware and
software components. Examples of hardware components
include mainframes. In one example, IBM® zSeries® sys-
tems and RISC (Reduced Instruction Set Computer) archi-
tecture based servers. In one example, IBM pSeries® sys-
tems, IBM xSeries® systems, IBM BladeCenter® systems,
storage devices, networks, and networking components.
Examples of software components include network applica-

20

25

40

45

50

55

6

tion server software. In one example, IBM WebSphere®
application server software and database software. In one
example, IBM DB2® database software. (IBM, zSeries,
pSeries, xSeries, BladeCenter, WebSphere, and DB2 are
trademarks of International Business Machines Corporation
registered in many jurisdictions worldwide.)

Virtualization layer 62 provides an abstraction layer from
which the following examples of virtual entities may be pro-
vided: virtual servers; virtual storage; virtual networks,
including virtual private networks; virtual applications and
operating systems; and virtual clients.

In one example, management layer 64 may provide the
functions described below. Resource provisioning provides
dynamic procurement of computing resources and other
resources that are utilized to perform tasks within the cloud
computing environment. Metering and pricing provide cost
tracking as resources are utilized within the cloud computing
environment, and billing or invoicing for consumption of
these resources. In one example, these resources may com-
prise application software licenses. Security provides identity
verification for cloud consumers and tasks, as well as protec-
tion for data and other resources. Consumer portal provides
access to the cloud computing environment for consumers
and system administrators. Service level management pro-
vides cloud computing resource allocation and management
such that required service levels are met. Service Level
Agreement (SLA) planning and fulfillment provides pre-ar-
rangement for, and procurement of, cloud computing
resources for which a future requirement is anticipated in
accordance with an SLA.

Workloads layer 66 provides examples of functionality for
which the cloud computing environment may be utilized.
Examples of workloads and functions which may be provided
from this layer include: mapping and navigation; software
development and lifecycle management; virtual classroom
education delivery; data analytics processing; transaction
processing; and switch mode transition and processing. As
mentioned above, all of the foregoing examples described
with respect to FIG. 3 are illustrative only, and the invention
is not limited to these examples.

It is understood all functions of the present invention as
described herein are typically performed by systems 600 and
700 (FIGS. 6 and 7) using one or more embodiments, which
can be tangibly embodied as modules of program code 42 of
program/utility 40 (FIG. 1). However, this need not be the
case. Rather, the functionality recited herein could be carried
out/implemented and/or enabled by any of the layers 60-66
shown in FIG. 3.

It is reiterated that although this disclosure includes a
detailed description on cloud computing, implementation of
the teachings recited herein are not limited to a cloud com-
puting environment. Rather, the embodiments of the present
invention are intended to be implemented with any type of
clustered computing environment now known or later devel-
oped.

According to an embodiment of the invention, a process for
switch mode transition and processing is implemented by the
system 600 (FIG. 6) and the system 700 (FIG. 7) and com-
prises losing a connection with a controller by a switch
device, entering a particular mode by the switch device, trans-
ferring flow entries of the switch device to one or more tables,
and notifying network application protocols that correspond
to the transferred flow entries.

FIG. 4 shows a block diagram of a system 400 including a
switch 420 (e.g., an OpenFlow switch) connected with a
controller 410, in accordance with an embodiment of the
invention. In one embodiment of the invention, the system

US 9,374,308 B2

7

400 includes one or more computing systems 450 connected
to the switch 420. OpenFlow provides an open protocol to
program one or more flow tables 430 in different switches and
routers. The datapath of the switch 420 comprises of a flow
table 430, and an action associated with each flow entry. The
set of actions supported by the switch 420 is extensible. The
switch 420 comprises at least three parts: the flow table 430,
with an action associated with each flow entry to inform the
switch how to process the communication flow, a secure
channel 425 that connects the switch 420 to the controller 410
that allows commands and packets to be sent between the
controller 410 and the switch 420 using the OpenFlow pro-
tocol 440, which provides an open and standard way for the
controller 410 to communicate with the switch 420. By speci-
fying a standard interface (the OpenFlow protocol 440)
through which entries in the flow table 430 may be defined
externally, the switch 420 avoids the necessity for having to
be programmed.

In one embodiment of the invention, the switch 420 may
have one or more application specific integrated circuits
(ASICs) that may include one or more flow tables 430. In one
embodiment, the flow table 430 may comprise one or more
Ternary content addressable memory (TCAM) devices, or
other hardware devices. In one embodiment of the invention,
the controller 410 adds and removes flow entries from the
flow table 430.

In one embodiment of the invention, the switch 420 may
comprise a dedicated OpenFlow switch that does not support
normal Layer 2 and Layer 3 processing, or an OpenFlow-
enabled general purpose Ethernet switch, for which the Open-
Flow protocol 440 and interfaces have been added as a fea-
ture. A dedicated OpenFlow switch is a “dumb” datapath
element that forwards packets between ports, as defined by
the controller 410.

In one embodiment of the invention, flows may be broadly
defined, and are limited only by the capabilities of the par-
ticular implementation of the flow table 430. For example, a
flow may comprise a transmission control protocol (TCP)
connection, all packets from a particular media access control
(MAC) address or Internet protocol (IP) address, all packets
with the same virtual local area network (VLLAN) tag, all
packets from the same switch port, etc. Each flow entry has an
action associated with it; such as basic actions (that all dedi-
cated OpenFlow switches support). One basic action is to
forward the flow’s packets to a given port (or ports), which
allows packets to be routed through the network. Another
basic action is to encapsulate and forward the flow’s packets
to a controller (e.g., controller 410). A packet is delivered to
the secure channel 425, where it is encapsulated and sent to a
controller. This action may be used for the first packet in a new
flow, so that the controller 410 may determine if the flow
should be added to the flow table 430. Another action may
comprise dropping the flow’s packets. This action may be
used for security, to curb denial of service attacks, to reduce
spurious broadcast discovery traffic from end-hosts, etc.

In one embodiment of the invention, an entry in the flow
table 430 has three fields: (1) a packet header that defines the
flow, (2) the action, which defines how the packets should be
processed, and (3) statistics, which keep track of the number
of packets and bytes for each flow, and the time since the last
packet matched the flow (to assist with the removal of inactive
flows).

In one embodiment of the invention, the switch 420 com-
prises an OpenFlow-enabled switch. In one embodiment, the
flow table 420 uses existing hardware, such as a TCAM, and
the secure channel 425 and protocol 440 may be ported to run
on the operating system of the switch 420. In one embodi-

10

15

20

25

30

35

40

45

50

55

60

65

8

ment, the flow table 430 and other flow tables of other
switches that may be connected are managed by the same
controller 410. In one embodiment of the invention, the
OpenFlow protocol 440 allows the switch 420 to be con-
trolled by two or more controllers for increased performance
or robustness.

In a classical router or switch, the fast packet forwarding
(data path) and the high level routing decisions (control path)
occur on the same device. An OpenFlow switch separates
these two functions. The data path portion resides on the
switch 420, while high-level routing decisions are moved to
the controller 410 (e.g., a server). The OpenFlow switch 420
and controller 410 communicate via the OpenFlow protocol
440, which defines messages, such as packet-received, send-
packet-out, modify-forwarding-table, and get-statistics. The
data path of the OpenFlow switch 420 presents a clean flow
table abstraction, where each flow entry contains a set of
packet fields to match, and an action (such as send-out-port,
modify-field, or drop). When the OpenFlow switch 410
receives a packet for the first time (i.e., never received before),
for which it has no matching flow entries, the OpenFlow
switch 420 sends this packet to the controller 410. The con-
troller 410 then makes a decision on how to handle this
packet. The controller 410 may drop the packet, or it may add
a flow entry directing the switch 410 on how to forward
similar packets in the future.

FIG. 5 illustrates a table 500 of example flow entries that
may be transferred to forwarding tables (e.g., flow table 430,
FIG. 4) of OpenFlow switches (e.g., switch 420), in accor-
dance with an embodiment of the invention. In one example,
the table 500 shows flow types including Layer 2 unicast,
Layer 3 unicast, Layer 2 multicast and Layer 2 IP multicast. In
one example, the OpenFlow entries include a match and
associated action for the flow types. In one example, the table
500 shows example forwarding table entries and the protocol
to be notified, according to one embodiment of the invention.

FIG. 6 illustrates a block diagram 600 of an OpenFlow
system, in accordance with an embodiment of the invention.
In one embodiment of the invention, the OpenFlow system
comprises a controller 410 and multiple switches 620. In one
embodiment of the invention, each of the switches 620 com-
prises an OpenFlow switch similar to switch 420, and each
includes flows 625 comprising of multiple flow entries 626 1,
2,to n (n being a positive integer). In one embodiment of the
invention, the switches 620 are connected and are controlled
by the controller 410 and communicate with each other. As
shown, the switches 620 are each in communication with the
controller 410.

FIG. 7 illustrates a block diagram 700 of the OpenFlow
system (FIG. 6), where communication between a particular
switch 620 is lost with the controller 410, in accordance with
an embodiment of the invention. In one embodiment of the
invention, the “X” represents loss of communication (in a
control plane) between the controller 410 and a particular
switch 620. In one embodiment of the invention, when a
switch 620 loses connection with the controller 410, the exist-
ing flow entries 625 are not invalidated immediately. In one
embodiment of the invention, all of the flow entries are trans-
ferred into the forwarding table 725 (e.g., FDB, routing or
multicast) and notified to the corresponding network appli-
cation protocol. In one embodiment of the invention, once the
forwarding table 725 is populated in the switch 620, the
existing OpenFlow entries 625 will be removed from the
switch 620.

In one example embodiment, upon the communication loss
with the controller 410 as indicated by the “X”, the switch 620
transitions from OpenFlow mode to a legacy or traditional

US 9,374,308 B2

9

mode and transfers its flow entries 625 to the forwarding table
725, and notifies one or more network application protocols
(e.g., RTM, IGMP snooping, etc.) that correspond to the
transferred flow entries 625.

Unlike traditional OpenFlow switches, in one embodiment
of the invention upon loss of communication between a con-
troller 410 and a switch 620, the switch 620 transitions to a
traditional forwarding mode gracefully so that all existing
flow entries are transferred into the traditional forwarding
tables (e.g., FDB, Multicast and routing) and notifies (e.g.,
through messaging, packets, etc.) the corresponding network
application protocols (of the secure channel) before being
deleted, then the switch enters into the traditional mode. In
one embodiment of the invention, based on the transferring of
flow entries 625 to the table 725, no packets are lost and the
functionalities of the existing flow entries are retained by
using the traditional forwarding tables (e.g., tables 726,727 to
728). In one embodiment of the invention, flooding is
decreased significantly since most incoming packets may be
processed by the transferred flow entries 625.

FIG. 8 is a block diagram showing a process 800 for switch
(e.g., switch 420, FIG. 4, switch 620 FIGS. 6-7) mode tran-
sition and processing upon communication loss with a con-
troller (e.g., controller 410, FIGS. 4, 6 and 7) in accordance
with an embodiment of the invention. In one embodiment of
the invention, in block 810 a connection is lost between a
switch and a controller. In block 820, a switch enters a par-
ticular mode, such as transitioning from an OpenFlow switch
mode to a legacy switch mode. In one embodiment of the
invention, in block 830 upon the transition ofthe switch mode
based on the loss of the communication between the switch
and the controller, flow entries from the switch are transferred
to forwarding tables in the switch.

In one embodiment of the invention, in block 840 the
corresponding network protocols for the flow entries are noti-
fied. In one embodiment of the invention, in block 850 after
the flow entries are transferred to the switch tables, and the
corresponding network protocols are notified, the flow entries
for the switch are removed/deleted.

The system 600/700 using embodiments of the invention
may include one or more source programs, executable pro-
grams (object code), scripts, or any other entity comprising a
set of computer program instructions to be performed. When
the system 600/700 includes a source program, then the pro-
gram is usually translated via a compiler, assembler, inter-
preter, or the like, which may or may not be included within
a storage device. These computer program instructions may
also be stored in a computer readable medium that can direct
a computer, other programmable data processing apparatus,
or other devices to function in a particular manner, such that
the instructions stored in the computer readable medium pro-
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

In the context of this document, a “computer-readable
medium” can be any means that can store, communicate,
propagate, or transport the program for use by or in connec-
tion with the instruction execution system, apparatus, or

10

15

20

25

30

35

40

45

50

55

60

65

10

device. The computer readable medium can be, for example
but not limited to, an electronic, magnetic, optical, electro-
magnetic, infrared, or semiconductor system, apparatus,
device, propagation medium, or other physical device or
means that can contain or store a computer program for use by
or in connection with a computer related system or method.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

In the context of this document, a “computer-readable
medium” can be any means that can store, communicate,
propagate, or transport the program for use by or in connec-
tion with the instruction execution system, apparatus, or
device. The computer readable medium can be, for example
but not limited to, an electronic, magnetic, optical, electro-
magnetic, infrared, or semiconductor system, apparatus,
device, propagation medium, or other physical device or
means that can contain or store a computer program for use by
or in connection with a computer related system or method.

More specific examples (a non-exhaustive list) of the com-
puter-readable medium would include the following: an elec-
trical connection (electronic) having one or more wires, a
portable computer diskette (magnetic or optical), a random
access memory (RAM) (electronic), a read-only memory
(ROM) (electronic), an erasable programmable read-only
memory (EPROM, EEPROM, or Flash memory) (elec-
tronic), an optical fiber (optical), and a portable compact disc
memory (CDROM, CD R/W) (optical). Note that the com-
puter-readable medium could even be paper or another suit-
able medium, upon which the program is printed or punched
(as in paper tape, punched cards, etc.), as the program can be
electronically captured, via for instance optical scanning of
the paper or other medium, then compiled, interpreted or
otherwise processed in a suitable manner if necessary, and
then stored in a computer memory.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

In one embodiment, where the system 100 is implemented
in hardware, the system 100 can be implemented with any one
or a combination of the following technologies, which are
each well known in the art: a discrete logic circuit(s) having
logic gates for implementing logic functions upon data sig-
nals, an ASIC having appropriate combinational logic gates,
a programmable gate array(s) (PGA), a field programmable
gate array (FPGA), etc.

US 9,374,308 B2

11

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.
The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.
The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.
It should be emphasized that the above-described embodi-
ments of the present invention, particularly, any “preferred”
embodiments, are merely possible examples of implementa-
tions, merely set forth for a clear understanding of the prin-
ciples of the invention.
Many variations and modifications may be made to the
above-described embodiment(s) of the invention without
departing substantially from the spirit and principles of the
invention. All such modifications and variations are intended
to be included herein within the scope of this disclosure and
the present invention and protected by the following claims.
What is claimed is:
1. A method comprising:
losing a connection with a controller by a switch device;
transitioning from an OpenFlow switching mode to a
legacy switching mode by the switching device in
response to losing the connection with the controller;

transferring flow entries of the switch device to one or more
switch forwarding tables; and

10

15

20

25

30

35

40

45

50

55

60

65

12

notifying network application protocols that correspond to

the transferred flow entries,

wherein flooding is decreased based on processing incom-

ing packets using the flow entries stored in the forward-
ing tables.

2. The method of claim 1, further comprising: removing the
flow entries of the switch device after the transferring of the
flow entries to the switch forwarding tables is completed.

3. The method of claim 2, wherein the switch device com-
prises an Ethernet switch device and an interface for adding
and removing the flow entries.

4. The method of claim 3, wherein functionality of the flow
entries is maintained by using the switch forwarding tables.

5. A computer program product for switch device process-
ing upon communication loss, the computer program product
comprising a computer readable storage medium having pro-
gram code embodied therewith, the program code readable/
executable by a processor to perform a method comprising:

losing a connection with a controller by a switch device;
transitioning from an OpenFlow switching mode to a
legacy switching mode by the switching device in
response to losing the connection with the controller;

transferring flow entries of the switch device to one or more
switch forwarding tables; and

notifying network application protocols that correspond to

the transferred flow entries,

wherein flooding is decreased based on processing incom-

ing packets using the flow entries stored in the forward-
ing tables.

6. The program of claim 5, further comprising: removing
the flow entries of the switch device after the transferring of
the flow entries to the switch forwarding tables is completed.

7. The program of claim 6, wherein the switch device
comprises an Ethernet switch device and an interface for
adding and removing the flow entries.

8. The program of claim 7, wherein functionality of the
flow entries is maintained by using the switch forwarding
tables.

9. A system comprising:

a controller device; and

a plurality of connected switch devices coupled with the

controller, wherein upon a particular switch device los-

ing communication with the controller, the particular

switch device:

transitions from an OpenFlow switching mode to a
legacy switching mode;

transfers one or more flow entries to one or more switch
forwarding tables; and

notifies one or more network application protocols that
correspond to the transferred one or more flow entries

wherein flooding is decreased based on processing
incoming packets using the flow entries stored in the
forwarding tables.

10. The system of claim 9, wherein the flow entries of the
switch device are removed after the one or more flow entries
are transferred to the forwarding tables.

11. The system of claim 10, wherein the particular switch
device comprises an Ethernet switch device including an
interface for adding and removing the one or more flow
entries.

12. The system of claim 11, wherein functionality of the
one or more flow entries is maintained by using the forward-
ing tables.

